加入支持让我们有继续维护的动力!会员畅享查看所有预告
立即购买
加拿大约克大学朱正宏教授:空间3D打印
- 来源:
- 学校官网
- 收录时间:
- 2025-10-24 15:15:22
- 时间:
- 2025-10-27 10:00:00
- 地点:
- 五山校区交通大楼学术报告厅
- 报告人:
- 朱正宏
- 学校:
- -/-
- 关键词:
- In-Space Additive Manufacturing, ISAM, 3D printing in space, microgravity, FDM, DED, space infrastructure, additive manufacturing, space engineering
- 简介:
- 太空中的增材制造(ISAM)为解决运载火箭尺寸和质量的限制问题提供了一种变革性的解决方案,能够实现超出地球范围的工具、零部件和结构的按需生产。通过在轨道或行星表面直接制造组件,ISAM 扩展了太空基础设施的设计可能性,并减少了对昂贵补给任务的依赖,然而仍存在重大技术挑战。In-space Additive manufacturing (ISAM) in space offers a transformative solution to the limitations of launch vehicle size and mass, enabling on-demand production of tools, parts, and structures beyond Earth. By fabricating components directly in orbit or on planetary surfaces, ISAM expands the design possibilities for space infrastructure and reduces dependence on costly resupply missions. However, significant technical challenges remain. In microgravity, controlling liquids, powders, and molten materials is difficult, limiting the range of viable Additive manufacturing technologies. Currently, Fused Deposition Modelling (FDM) and Directed Energy Deposition (DED), where one extrudes solid polymer filaments and the other melts metal wire feed by laser, are the most practical approach demonstrated in space. Yet, factors like surface tension, lack of gravity, and vacuum conditions affect print precision and mechanical performance. This seminar explores the development background and current status in the field, and presents recent research progresses on gravity and vacuum effects on FDM and DED processes by Earth-based experimental investigation and multi-physics modeling conducted in Space Engineering Lab at York University.
- -/- 34
报告介绍:
太空中的增材制造(ISAM)为解决运载火箭尺寸和质量的限制问题提供了一种变革性的解决方案,能够实现超出地球范围的工具、零部件和结构的按需生产。通过在轨道或行星表面直接制造组件,ISAM 扩展了太空基础设施的设计可能性,并减少了对昂贵补给任务的依赖,然而仍存在重大技术挑战。In-space Additive manufacturing (ISAM) in space offers a transformative solution to the limitations of launch vehicle size and mass, enabling on-demand production of tools, parts, and structures beyond Earth. By fabricating components directly in orbit or on planetary surfaces, ISAM expands the design possibilities for space infrastructure and reduces dependence on costly resupply missions. However, significant technical challenges remain. In microgravity, controlling liquids, powders, and molten materials is difficult, limiting the range of viable Additive manufacturing technologies. Currently, Fused Deposition Modelling (FDM) and Directed Energy Deposition (DED), where one extrudes solid polymer filaments and the other melts metal wire feed by laser, are the most practical approach demonstrated in space. Yet, factors like surface tension, lack of gravity, and vacuum conditions affect print precision and mechanical performance. This seminar explores the development background and current status in the field, and presents recent research progresses on gravity and vacuum effects on FDM and DED processes by Earth-based experimental investigation and multi-physics modeling conducted in Space Engineering Lab at York University.
报告人介绍:
朱正宏,加拿大约克大学机械工程系教授,担任制造技术创业中心和空间工程实验室的创始联合主任一职;曾担任地球与空间科学与工程系空间工程本科课程的主任、机械工程系系主任以及约克大学研究共享办公室负责研究工作的首届学术主管。兴趣包括航天器动力学与控制、空间机器人技术、计算力学与控制、机器学习、太空3D打印以及立方体卫星技术。发表235篇同行评审期刊论文和185篇会议论文。国际机械系统动力学学会的副主席、也是加拿大机械工程学会的名誉财务主管和董事会成员、国际宇航科学院院士、加拿大皇家学会学院会员、加拿大科学院院士、加拿大工程学会会员、加拿大机械工程师学会会员、美国机械工程师学会会员、美国航空航天学会准会员以及电气与电子工程师协会资深会员等头衔。获得加拿大安大略省专业工程师协会颁发的2019年安大略省专业工程师奖——工程研发奖章、获得加拿大机械工程师学会颁发的2024年固体机械奖、2021年Robert W. Angus奖章、约克大学颁发的2022年校长研究卓越奖。目前,担任国际宇航科学院旗舰期刊《Acta Astronautica》的主编。
购买下会员支持下吧...用爱发电已经很久了 立即购买

